

Jul 31, 2022

Dear Water Warriors,

With Reverse Osmosis systems offering challenges due to frequent fouling – biological, particulates or colloids, designers started paying attention to SDI control in pre-treatment and UF provided an Automatic Choice.

With time, in-order to optimize UF cost, designers started to employ backwash sequences with Acid, Alkali etc to have higher flux.

This issue of '**Waughter**', we present the steps to design a UF system and understand important Material involved in designing UF System.

Nidhi Jain – Civil Engineer

Waughter Vol 1 Edi 8 ... ReCap

In above publication we have already discussed about the use of Ultra-Filtration with key words like

- Cross Flow Vs Dead End
- Target UF Impurities: Particulates, Bacteria Virus
- Hydrophilicity
- Choice of Membrane Material
- Operation & Control Philosophy
- Role of Backwash & CEB

Waughter Readers, please download above from <u>www.aktioconsultancy.com</u> and move further for designing a UF system.

Also please download the Software UF design in XLS and if any difficulty please write to us to provide the software to you.

Waughter	
olume 1 : Edition 8 – Micro & Ultra Filtration (MF	& UF), Moving Bed Biofilm Reactor (MBR) Aug 31, 2
Dear Water Warriors, The increase in popularity of Reverse O posed new Challenge in form of controlling the intet of RO gwing Rise to new soluti stream of RO as MF/UF. MF though did the jr not very effective against Microbiology. UF Provided excellent Control on Biofoduil thrown a new Challenge in form of use of NaOH and NaOCI during CEB. Use of Men further in microbiology (MBR) is to get challenges of biomass water mixer setting. This issue of "Waught" Successform the setting of the setting the setting of the setting of the setting of the setting the setting of the setting of the setting of the setting of the set the setting of the setting of the setting of the setting of the set the setting of the set of th	SD) at characteristic model of the second se
Q. Which are target Impurities in UF? Ultra-Filtration (UF) aims at full or partial rem impurities in comparison to NF & RO as shown be	low. coagulation filtration can remove TSS, Turbidity and SD the particles above >0.1µ, are still a concern for RO. Thu
Data Data Post Post pit P	Image: Constraint of the section of the sec
S04, CO3 mg/l 125 1 Na, K mg/l 170 170 Cl, NO2, HCO3 mg/l 310 310	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Design of UF System... defining application!

A Customer has given the problem as hereunder:

We need 55 m³/h, UF Plant for treated Sewage application. Currently we have RO Plant of capacity 45 m³/h and that is not performing well and chocking often. The idea of UF is to protect RO membranes. The treated sewage data is:

TSS	mg/l	:	85
COD	mg/l	:	110
BOD	mg/l	:	29
рН		:	7.5

The system need to be accommodate in the space of 3 * 3 m available in the RO Plant.

Now let's understand this requirement.

SUEZ

WORLD CLASS RO MEMBRANES AT UNBEATABLE PRICES

Avail world class Suez RO Membranes at **extremely attractive prices**. Our wide range of membrane offerings take care of any kind of water challenges you might be facing.

WHAT MAKES OUR MEMBRANES SO AFFORDABLE:

OUR RO MEMBRANES ARE **ROLLED IN INDIA** MAKING THEM CHEAPER

INCREASE IN THE DOLLAR -COMPETITOR MEMBRANES ARE MORE EXPENSIVE

CONSISTENT PRICING OF OUR RAW MATERIALS - LESS FLUCTUATIONS

MATERIAL READILY AVAILABLE EX-STOCK IN MAHARASHTRA & GUJARAT

Get in touch with us to know more about our **RO Membranes**. We're here for you!

monika@purewaterent.net | +91 7506795491 | www.purewaterent.net

Jul 31, 2022

The Role of RFQ Format

General Information

UF is a cyclic automated process. Further most of the time UF is not a standalone technology. It has:

- A. An Upstream process such as STP or ETP or simple Reservoirs and Intake in case of River water.
- B. A downstream process e.g. RO or IX based DM Plant

Further, irrespective of Upstream or Downstream operational SOPs, the UF operation is always 100% automatic based on PLC.

Further like any technology, we have a limit of impurities set by different membrane manufacturers.

The designer shall pay attention to the limiting conditions as specified by the membrane manufacturer.

The UF feed water Limits

Below are the limiting conditions defined by a membrane manufacturing company:

Turbidity, NTU	300
TSS, mg/l	50

The above define % Cross flow to be maintained as these impurities do not pass UF capillary and accumulate in housing. The cross flow is 10%, unless these limits in feed water are < 25% of maximum limits.

рН Мах	10.5
COD mg/l	250
Temperature °C	40
Oil & Grease, mg/l	50
FRC, mg/l	1

These values are defined considering UF material, Housing material & Potting Resin used in manufacturing a UF Module.

Date										
Customer	Name									
Address										
Contact P										
Contact No.						1-1				
Industry 1					Power/	Textile/Pha	rma/Cl	nemical/	Other -	
Plant Det	ails									
Name of 0										
Expected	Purchase	e Date								
Plant Capa		/d								
No. of Str										
Water Source			Please 0	Check Engin	eering l	Process F	act Shee	et		
Specify M					Yes / No)				
Key Wate	er Analys	sis								
Turbidity	TSS	TDS	Total	Ca	lcium	Total	Color	COD	Temp	pH
			Alkalinity	Har	rdness	Hardness				
NTU	mg/l	mg/l	mg/l	mal	1 CaCO ₃	mg/l		mg/l	°C	
MIU	mg/1	mg/1	mg/1	mg/	i cacos	mg/1		mg/1	L.	
Any Speci	fic Reque	est-								
Any Speer	ne neque									
Attach Wa	ater Anal	ysis Report if <i>I</i>	Applicable:							
What shal	l be use d	of UF Product:								
wildt Sildi	i be use (or or rioduce.								
Urgency f	or Quote	: days								

The Specifications from Client are very important and must be structured in the RFQ as shown:

Its important to know the type of Industry as Sewage may get some contamination based on the Industry Type.

UF is a batch process and that too in Auto-operation mode so one must check.

- Storage before UF
- Storage After UF

Further TDS decides the metallurgy of Pumps involved. Alkalinity, temperature and Hardness Define the LSI of feed water and thus the need of pH Correction in UF Feed tank to avoid scaling on UF membranes.

If LSI is < -0.3, you need not do CEB with hazardous chemicals such as HCl.

Finally, UF generates the treated water for it's own backwash. So, it's always must to define nett flow in m3/day for designing a UF system. (1320 m3/d)

Name

Waughter

Volume 2 : Edition 7 – Ultra Filtration Design & BOQ Generation

Flux Guidelines?

The better the feed water higher is the flux. And for very bad water fed in UF the flux needs to be reduced.

Since the backwash water is clean UF Filtered water the flux during backwash is constant, irrespective of the feed water. The guideline that our designers can safely follow are given below:

Operating Flux Guidelines					
for Type of Water	Unit	Dood End	Cross-Flow		Back Wash
for type of water		Dead - End	With Filter	Without Filter	
Bore Water	l.m ⁻² .h ⁻¹	80			160
Surface Water	l.m ⁻² .h ⁻¹	50	100	70	160
Treated Sewage	l.m ⁻² .h ⁻¹		80	50	160
Treated Effluent	l.m ⁻² .h ⁻¹		60	40	160
Effluent with Solvent*	l.m ⁻² .h ⁻¹		50	40	160
Sea Water	l.m ⁻² .h ⁻¹		50	30	160

Step 1

<u>Flux.</u> So, we need to select flux for our case. From above table it can be 50 - 80 lmh and that decision rests on availability of filter post STP. Let's consider a Filter and select the operating flux as 80 lmh.

Step 2

<u>UF Feed Water Tank.</u> We need to now place PSF after STP and then have a Filtered water storage Tank to feed to UF. Since operation cycle of UF and PSF are different the capacity of UF feed tank shall be such that the UF operation is not interrupted during PSF Backwash ~ 1 Hr Feed storage.

Step 3

<u>UF Feed Pump.</u> Simple it shall be sized for xx m3/h @ 30 mwC. The Shut off pressure of this pump shall be < maximum allowable feed pressure for UF membranes. The capacity XX shall be arrived at later after mass balance.

Remember it's Cross flow operation so the extra water rejected by UF membrane need to go back to STP inlet and shall come back through STP and PSF back as feed.

(72 m³/h) after Final Design.

Step 4

<u>UF protection from unwanted material.</u> Install a Metallic or AEP strainer of size 100 – 200 microns. Some engineers offer unwanted logic that we have PSF before so PSF will any way give ~ 35-micron quality so why we should have a strainer?

Strainers are given before UF to avoid any accidental ingress of sand carbon or any debris that may come in UF feed tank. It's a must. Plan for auto flushing of this strainer and for large plant keep a DPI for this strainer as well.

Step 5

<u>Select Membrane.</u> Unlike RO membranes, the manufacturers are yet to agree to a standardized size and we have no of different UF modules based on Filtration Surface Area of UF fibre. See below:

Physical PROPERTIES							
Configuration	-		Cross-flow,	/ Dead end			
Membrane Type	-		Hollow	Fibers			
Membrane Material	-	PolyNorbit	PolyNorbit PolyNorbit PolyNorbit PolyNorbit				
Housing Material	-	UPVC					
Nominal Membrane Area	m2	9	26	37	55		
Fiber Dimensions	OD ID mm	1.2 & 0.8					
Pore Size	micron		0.0	02			
Diameter	mm [inch]	90 [3.54]	160[6.29]	200 [7.87]	200 [7.87]		
Length	mm [inch]	1130 [44] 1130 [44] 1280 [50] 1792 [3		1792 [70]			
Weight	kg (ave)	7	18	28	39		
MWCO (Nominal)	kDa	75					
System Integration	-	Modular Rack					

For above specification since we have flow rate as 55 m^3/h and we have selected flux as 80 $l/m^2.h$, the membrane Area required for our design is:

Membrane Area = Flow \div Flux = 55000 lph \div 80 l/m².h = 688 m²

If we select the membrane with 55 m3 area, the no of membranes required would be = $688 \div 55 = 12.5$

So, our design shall have 13 Nos of membrane with 715 \mbox{m}^2 total surface.

Jul 31, 2022

Step 6

Backwash Pump Selection. In previous step we understand 715 m2 surface is required for keeping Flux guideline under check. If the backwash flux is 160 lmh the flow rate for backwash shall be:

= 715 * 160 = 114400 lph ~ 115 m³/h

Further if we consider 29 min operation and 1 min backwash time, we have 1 cycle of 30 mins. Means 48 such cycles in a day. So water wasted in backwash is

= 48 * (115 ÷ 30) = 92 m3

Water Produced per day = (55*29 ÷ 60) * 48 = 1298 m3

So we lose \sim 7.21 % water during backwash and that much would have to be fed extra and the no of membranes shall be revised accordingly.

Step 7

<u>Use XLS.</u> Based on the data fed in membrane design XLS now the revised specifications would be:

Description	Unit	Value
Nos Needed	Nos	15.00
Back Wash Pump Needed	m3/h	123
Feed Flow	m3/h	65
Feed Flow with cross Flow	m3/h	72
Recovery without CF count		91
Recovery with CF count		87
Gross Production	m3/d	1419
Nett Production	m3/d	1320
Cycle Time	min	30
No of Cycles/day	Nos	48
BW Duration	min	1
FF Duration	min	1

Since the impurities in feed water in our design case are higher than usual on maximum allowable limits, we added a step of "Forward Flush".

Step 8

Once the Design is done, we go towards enlisting the equipment needed for complete skid.

Sr No	Parameter	Unit	Value
1	Feed Flow	m ³ .h ⁻¹	65
2	Cross Flow	m ³ .h ⁻¹	7
3	Feed Flow with Cross Flow	m ³ .h ⁻¹	72
4	Permeate Flow (nett)	m ³ .h ⁻¹	55
5	BW In Flow	m ³ .h ⁻¹	123
6	BW Out Flow	m ³ .h ⁻¹	123
7	Filtration Flux	l.m ⁻² .h ⁻¹	80
8	B/W Flux	l.m ⁻² .h ⁻¹	160
9	CIP In flow	m ³ .h ⁻¹	65
10	Membrane Type	-	GRAFil 8060
11	Membrane Nos	Nos	15
12	Port Connection Size	mm	50
13	CIP Tank Size - Calculated	I	988
14	CIP Tank Size Provided	I	2000

Step 9

Next step is to go for valve size and Pipe Size. We also need to understand which valves are auto operation and which ones are manual.

Sr No	Valve ID	Tag	Calculated NB	Selected NB	Qty	Type of Valve
1	Feed Effluent	V1	113	125	1	Auto
2	Permeate	V2	107	125	1	Auto
3	BW In	V3	148	150	1	Auto
4	BW Out	V4	148	150	1	Auto
5	Cross Flow Out	V6	36	40	1	Manual
6	Drain	V5	113	125	1	Manual
7	CIP Chem In	V7	107	125	1	Manual
8	CIP Chem Out	V8	107	125	1	Manual
9	Module Isolation	IsoVs	NA	50	30	Manual

- a. Valve shall be sized for 2.0 m/s velocity.
- b. Auto Valve can be with Pneumatic or electrical actuators.
- c. <u>Bottom line</u>: Always Auto operation.

Jul 31, 2022

Jul 31, 2022

Role of CEB and how to design it?

<u>Chemical Enhanced Backwash</u> is extension of membrane cleaning procedure to avoid high TMP. In our case we have 48 cycles of backwash. We can

- a. Inject 500 mg/l dose of Citric Acid @ 10% Solution during backwash. (Scale Cleaning)
- b. Inject 500 1000 mg/l dose of NaOCl @ 10% Solution during backwash. (Bio Fouling Control)
- c. Inject 500 mg/l dose of NaOH @ 30% Solution during backwash. (COD & Organics, O&G Cleaning)

The cupuerty of runnes a runnes negative rol ceb shall be	
as below.	

The Capacity of Pumps & Tanks Required for CEB shall be

Chemical		Citric Acid	NaOCI	NaOH
Application Flow	m³/h	125	125	125
Dose	mg/l	500.00	1000.00	500.00
Applied Conc	%	10	10	30
Liquid Dosing Required	lph	625.0	1250.0	208.3
Selected Pump	lph	750	1500	250
Applied Frequency Per day		4	2	2
Solution Preperation Frequency	h	24	24	24
Storage tank Volume	lpd	3000	3000	500

Final BOQ with Instruments?

UF are usually skid Mounted plants. For larger plant > 3 membranes, it's recommended to install the pumps separately on foundations.

Sr No	Туре	Item	Tag No.	MOC	Unit	Size/ Capacity	Quantity
1	Mechanical	Feed Tank		HDPE	m3	60	1
2	Mechanical	Product Tank		HDPE	m3	60	1
3	Mechanical	CIP Tank	Tank	HDPE	1	2000	1
4	Module	GRAFiL 8060 Module	UF	UF Membrane	m2	55 m2	15
5	Electro Mech	Feed Water Pump	P1	SS 316		72 m3/h @ 3 Kg/Cm2	1
6	Electro Mech	Suction Valve		UPVC-M		150 NB, Ball Valve	1
7	Electro Mech	Discharge Valve		UPVC-M	mm	125 NB, Ball Valve	1
8	Electro Mech	Discharge Valve - NRV		UPVC-M	mm	125 NB, NRV	1
9	Electro Mech	Backwash Water Pump	P2	SS 316		125 m3/h @ 2.0 Kg/Cm2	1
10	Electro Mech	Suction Valve		UPVC-M		200 NB, Ball Valve	1
11	Electro Mech	Discharge Valve		UPVC-M	mm	150 NB, Ball Valve	1
12	Electro Mech	Discharge Valve - NRV		UPVC-M	mm	150 NB, NRV	1
13	Electro Mech	CIP Pump	P3	SS 316		72 m3/h @ 3 Kg/Cm2	1
14	Electro Mech	Suction Valve		UPVC-M		150 NB, Ball Valve	1
15	Electro Mech	Discharge Valve		UPVC-M	mm	125 NB, Ball Valve	1
16	Electro Mech	Discharge Valve - NRV		UPVC-M	mm	125 NB, NRV	1
17	Electrical	Motor Feed Pump			KW	From Vendor	
18	Electrical	Motor BackWash Pump			KW	From Vendor	
19	Electrical	Motor CIP Pump			KW	From Vendor	
20	I/C Valves	Feed Valve	V1	Auto Ball Valve	mm	125	1
21	I/C Valves	Permeate valve	V2	Auto Ball Valve	mm	125	1
22	I/C Valves	Backwash In Valve	V3	Auto Ball Valve	mm	150	1
23	I/C Valves	BW Out Valve	V4	Auto Ball Valve	mm	150	1
24	I/C Valves	Drain Valve	V5	Manual Ball Valv	mm	40	1
25	I/C Valves	Cross Flow Valve	V6	Manual Ball Valv	mm	125	1
26	I/C Valves	CIP In Valve	V7	Manual Ball Valv	mm	125	1
27	I/C Valves	CIP Out Valve	V8	Manual Ball Valv	mm	125	1
28	I/C Valves	Manual Isolation valve	IV 1, IV 2	Manual Ball Valv	mm	50	4
29	Instrument	Pressure Gauge		SS Boudon			5
30	Instrument	PG Isolation Valve		SS Bourdon			5
31	Instrument	Pressure Transmitter	PT				2
32	Instrument	Flow Transmitter	FT / FI				2
33	Instrument	Control Panel - PLC					1
34	I/C Pipework			Lot			1
35	Skids			Lot			1

We need support of Instruments to facilitate auto operation of the plant. For this project we have recommended for PTs as well as FTs in the Design. PLC would be able to get these 4-20 Amps data in its memory and can calculate:

- Flux
- Trans Membrane Pressure Differential
- Permeability

Flux/TMP so that we can take a call when to do CIP or if change in frequency of CEB is recommended.

The Final Points

- Chemical Enhanced Backwash is applied only, if necessary, based on Quality of Feed. Use of chemicals daily reduces plant life.
- Air Injection while helps in cleaning can lead to severe Bio-fouling. Please be aware.
- CIP shall be performed minimum once in 3 months even if everything is in order.
- Operation & Maintenance Manual are just guideline in details. Simple operating SOPs and Work Instructions WI shall be developed based on Operation Teams Skills and Understanding.

Jul 31, 2022

Volume 2 : Edition 7 – Ultra Filtration Design & BOQ Generation

Campus Update?

We wished to include fresher engineers in Aktion Indiaa.

Aparna, Anuradha, Sonali, Vaishnavi, Deepa, Antora & Vrushika now support our customers. We grow in delivery and numbers.

जल जीवन जननी !!

It's Worth it!!

My first Offline Training Program that to with the fresh engineers of 2022 batch. Anxious, curious and half done due to 4 semester lost in Covid-19 pandemic.

on this day I remember the hardship the budding engineers have faced during lockdown - no college, Online exams, no colleagues to discuss.

All well that ends well!! #training #engineers #civilengineers #mechanicalengineers #electricalengineers #instrumentationandcontrol #freshershiring #get #campus #covid #onl #inestudy

Thank you Sanjeev Srivastava and Ashwini vernekar

Our world is Waughter

The technical knowledge share attempt of Aktion Consultancy and the contents in the magazine shall be qualified by Sanjeev Srivastava our Technology Lead.

Our next edition focuses on: "STP Design for Indian Conditions of Tendering"

Please feel free to write or contact Mrs. Neha Deshpande 95129 55227

Aktion Consultancy C 1305, Rajyash Rise New Vasana, Nr Vishala CircleNH-08, Ahmedabad - 380 051 India

Alka Srivastava – Founder