

Volume 2: Edition 3 – Precipitation Control for Feed water to RO & ZLD to Avoid Scaling

Mar 31, 2022

Dear Water Warriors,

With majority of projects now shifting to Zero Liquid Discharge from mere Wastewater Treatment, Science of Precipitation comes back in existence.

Ca Mg & SiO₂ now need to be removed either during Reverse Osmosis or before Thermal Evaporation to control scaling and reduce CIP of MEE/MVR.

SSr our CTO accepted this invitation to simply the subject to educate beginners as subject appears quite complicated in handbooks and internet.

CIPs through a new challenge in managing salts as well as NO_3 as mostly HNO_3 is used for CIPs.

This issue of 'Waughter', let's focus on Precipitation.

Nidhi Jain – Civil Engineer

What if not Removed ?

Ca in presence of alkalinity with precipitate as $CaCO_3$ and deposit on membranes. If high SO_4 is available $CaSO_4$ precipitation on membranes is also a concern.

Mg usually do not create a problem in RO as the pH control allows for Alkalinity to be free of OH.

 $\rm SiO_2$ above 300 ppm in RO reject can cause serious scaling on membranes and even Antiscalant are not able to solve the issue.

Even if RO is managed, the invers solubility associated with Ca Mg and SiO_2 means that their concentrations shall be reduced before feeding to MEE to avoid frequent CIPs.

 $\rm SiO_2\,$ removal needs co-precipitation with $\rm Mg(OH)_2,$ which can be precipitated only if all Ca is precipitated First.

The Softening Tool in XLS

While we cover the theory of softening as well as explain the reactions in simple forms, for day-to-day operations you may need a quick calculator.

Please download the file

Waughter V2 E3_Lime & Soda Ash Estimates.xls

From www.aktionconsultancy.com

And you can estimate

Lime Dose Soda Ash Dose Sludge Concentration

In further versions we will also cover the XLS for estimation of $Mg(OH)_2$ for SiO_2 precipitation.

The XLS also includes though the $Mg(OH)_2$ & SiO_2 ratio required to be maintained for a feed water SiO_2 to achieve 15 ppm Final SiO_2 in treated water. Wait for the XLS tool in subsequent editions of Waughter.

Project Background – Case Study

Our customer here is well known group in Ahmedabad and some of the data are changed here to suit confidentiality and make the learning complete.

Sr No	Parameter	Unit	Value
1	pH		7
2	Turbidity	NTU	10
3	Total Suspended Solids	ppm as such	10
4	Total hardness	ppm as CaCO ₃	225
5	Calcium	ppm as CaCO ₃	150
6	Magnesium	ppm as CaCO ₃	75
7	Chlorides + F	ppm as CaCO ₃	1058
8	M.Alkalinity	ppm as CaCO ₃	140
9	P.Alkalinity	ppm as CaCO ₃	0
10	Sulphates	ppm as CaCO ₃	1
11	Nitrates	ppm as CaCO ₃	1
12	Silica	ppm as SiO ₂	15
13	Sodium (By difference)	ppm as CaCO ₃	975.0

Additionally, Ammonia is present from treated WWTP and calculated as $\rm NH_4Cl$ of 5 ppm as $\rm CaCO_3$

Chlorine Dioxide is widely used as a bleaching/delignification agent in the pulp and paper industry, providing a high-quality & low-cost bleaching process.

CIO2 treatment is superior to chlorine bleaching processes in that it virtually eliminates all dioxin discharges into the environment, and help pulp and paper manufacturers meet environmental requirements.

This in turn ensure that the end product achieves high brightness, more strength & better texture.

ADVANTAGES:

- High brightness and brightness stability achieved.
- Excellent for shive and dirt removal.
- Highly selective Minimal degradation of pulp.
- Less organic chlorine than Cl2 and ClO-
- Radical scavenger.
- ClO2's bactericidal, fungicidal and algaecide properties ensure slime control in the plants.

Pure Water Enterprises Pvt Ltd.

308 Matharu Arcade, Subhash Road, Abv Axis Bank, Behind Garware House, Vile Parle East, Mumbai - 400057

Mobile No. : 7506189869 E-mail : info@purewaterent.net Website : www.purewaterent.net

Volume 2 : Edition 3 – Precipitation Control for Feed water to RO & ZLD to Avoid Scaling

Mar 31, 2022

The Lime Ca(OH)₂ and Soda Na₂CO₃ Precipitation

 CO_2 present is water consumes lime so to estimate lime dose, Equation is always used.

The Ca and Mg Present in water Consume Lime to convert to $CaCO_3$ and $Mg(OH)_2$ as precipitates as long as Ca & Mg are bonded with HCO_3 . This form of Ca & Mg are also referred as Temporary Hardness. So, conclusion is for temporary hardness removal we only need lime. Apply Equation 2 & 3 below.

Sequential Understan	ding of Pre	cipitat	ion Chemis	try					
Neutralization of CO2 gas ar	nd Precipitation	as CaCi	D ₃						
Equation 1	CO2	+	Ca(OH)2	=	CaCO ₃	+	H ₂ O	+	
gm as Such	44		74		100				
gm as CaCO3	100		100		100				
My Case	31.74		31.743		31.74	S			
Precipitation of Ca bonded v	vith Alkalinity (Tempor	ary Hardness) a	as CaCO ₃				•	
Equation 2	Ca(HCO ₃) ₂	+	Ca(OH) ₂	=	2CaCO₃	+	2H ₂ O	+	
gm as Such	162		74		200				
gm as CaCO3	100		100		200				
My Case	140		140.00		280.00	S			
Precipitation of Mg bonded valid if Ca is < Alkalinity.	with Alkalinity	(Tempoi	rary Hardness)	as Mg(O	H2) and Ca of I	ime as (CaCO ₃ . This Eq	uation w	rill only be
Equation 3	Mg(HCO ₃) ₂	+	2Ca(OH) ₂	=	2CaCO ₃	+	Mg(OH)2	+	H ₂ O
gm as Such	146.3		148		200		58.3		
gm as CaCO ₃	100		200		200		100		
My Case	0		0.00		0.0	S	0.0	S	
Precipitation of Ca bonded v	vith Chloride (F	'ermane	nt Hardness) a	is CaCO ₃	(Use Similar Ec	quation i	f Ca Bonded w	ith SO ₄ (or NO ₃)
Equation 4	CaCl ₂	+	Na ₂ CO ₃	=	CaCO ₃	+	2NaCl	+	
gm as Such	111		106		100		117		
gm as CaCO ₃	100		100		100		100		
My Case	89.0		89.00		89.0	S	89.0		
Precipitation of Mg bonded CaCl ₂ produced would need	with Chloride (Eq 4 to be rep	Perman eated.	ent Hardness)	as CaCO ₃	(Use Similar E	quation	if Mg Bonded	with SO ₂	or NO ₃),
Equation 5	MgCl ₂	+	Ca(OH) ₂	=	Mg(OH) ₂	+	CaCl ₂	+	
gm as Such	95.3		74		58.3		111		
gm as CaCO3	100		100		100		100		
My Case	75		75.00		75.00	S	75.0		
Precipitation of excess Alkal Hardness will be Zero)	inity (Bicarbona	ates bor	ded with Na) (in this ca	se all hardness	would t	e temporary o	only, Per	mannet
Equation 6	NaHCO ₃	+	Ca(OH) ₂	=	CaCO ₃	+	NaOH	+	H ₂ O
gm as Such	84		74		100		40		
gm as CaCO ₃	50		100		100		100		
My Case	0		0.00		0.00	S	0.0		
Presence of Ammoniam Ion	will Consume i	more lin	ne and produce	e CaCl ₂ th	at would need	Equatio	n 4 to be repe	ated.	
Equation 7	2NH ₄ Cl	+	Ca (OH) ₂	=	2NH ₃	+	CaCl ₂	+	2H ₂ O
gm as Such	107		74		34		111		
gm as CaCO3	100		100		200		100		
My Case	5		5.00		10.00		5.0		
Lime need	ed as Ca(OH) ₂	mg/l	186.29			s	Slud	ge Estim	ation
Soda Ash nee	ded as Na ₂ CO ₄	mg/l	89.00	t					
Sludge Formed Auuming	100% Reaction	ma/l	444.47	ł					

If permanent Hardness is present Soda Ash Na_2CO_3 comes in process, and one need to apply equation 4 & 5 as well.

Equation 6 is rarely used and is of academic significance. Equation 7 is used to correct dose of lime if Ammonia is present, mainly in recycle water from a ETP where nitrification is poor.

The Role of HRSCC Clarifier or Settler

While chemistry is the DNA of process optimization, the role of Reaction Tank, pH and Addition Point of Na_2CO_3 and $Ca(OH)_2$ is important as well. The design of Reaction Tank can not generalized as optimum pH of $CaCO_3$ precipitation is 8.3 and that for $Mg(OH)_2$ is 10.4.

Dumping Lime or Soda does not help either, the right concentration of Lime Slurry to be dosed is \sim 6% and that of Soda Ash \sim 10%.

 $FeCl_3$ is not required for the case most often, but system shall be engineered to dose \sim 10 mg/l $FeCl_3$ of 6% concentration.

Polyelectrolyte used shall be not only flocculating but dewatering in nature. It's often a better practice to use Flocculant on settled sludge or in Core of HRSCC post Reaction Tank as dosing flocculant in Reaction Tank disturbs natural Coagulation of CaCO₃ and Mg(OH)₂ flocs as they have opposing charges during nucleation.

For SiO₂ Precipitation Mg Precipitated to SiO₂ ratio can be from 2.5 to 1.35 from feed SiO₂ varying from 20 – 120 mg/l. The treated water SiO₂ is possible upto ~ 15 mg/l in lab experiments but in real plant the guarantee shall not be < 25 mg/l.

HRSCC if used shall be designed for an upwards rise rate of 1.8 m³/h.m^{2.} In case plant flow rate is small say < 7 m³/h use simple clarifier or just a settling tank with slopping bottom, never a plate clarifier or Tube settler.

During shutdown it's a good idea to do CIP of HRSCC using Citric Acid to clean shaft and bottom sludge scraper. Use HCl or H_2SO_4 to reduce pH < 7.5 for subsequent feed in RO or MEE.

Volume 2 : Edition 3 – Precipitation Control for Feed water to RO & ZLD to Avoid Scaling

Mar 31, 2022

If you wish to use NaOH Instead of Ca(OH)₂

During Lime softening Ca available in lime need to be precipitated as CaCO₃. This means excess sludge!!

NaOH Can be handy in some situations to manage the sludge volumes.

Neutralization of CO ₂ gas and Precipitation as CaCO ₃ Equation 1 CO ₂ + 2 NaOH = Na ₃ CO ₃ + H ₂ O + Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Na ₃ CO ₃ + H ₂ O + Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2">Na ₂ CO ₃ + Na ₂ CO ₃ 1.00 Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Na ₂ CO ₃ + Na ₂ CO ₃ - Na ₂ CO ₃ + Na ₂ CO ₃ - Na ₂ CO ₃ - Na ₂ CO ₃ - Na ₂ CO ₃ N
Equation 1 CO2 + 2 NaOH = Na ₂ CO3 + H ₂ O + gm as Such 44 80 106 Image: Color of
gm as Such 44 80 106 Image: Marcine
gm as CaCO ₃ 100 <
My Case 31.74 31.74 31.74 1 I <thi< th=""> I</thi<>
Precipitation of Ca bonded with Alkalinity (Temporary Hardness) as CaCO ₃ Equation 2 Ca(HCO ₃) ₂ + NaOH = CaCO ₃ + NaHCO ₃ + H2O gm as Such 162 40 100 1 84 - - gm as Such 162 40 100 100 84 - - gm as Such 160 50 100 100 0 100 - - My Case 140 70.00 140.00 5 140 - - - Precipitation of Mg bonded with Alkalinity (Temporary Hardness) as Mg(OH2) + 4NaOH = Mg(OH) + 2Nay, CO ₃ + 2H ₂ O gm as Such 146.3 160 58.3 212 - - - gm as Such 146.3 160 58.3 2 0.0 - - gm as Such 146.3 0.00 0.00 5 0.0 - -
Equation 2 Ca(HCO ₃)2 + NaOH = CaCO ₃ + NaHCO ₃ + H20 gm as Such 162 40 100 84 -
gm as Such 162 40 100 N 84 M gm as CaCO ₃ 100 50 100 <td< td=""></td<>
gm as CaCO ₃ 100 50 100 <t< td=""></t<>
My Case 140 70.00 140.00 S 140 I Precipitation of Mg bonded with Alkalinity (Terreportary Hardness) as Mg(OH2) and Ca of Line as CaUo ₃ . This Equation will only be valid? S 140 I </td
Precipitation of Mg bonded with Alkalinity (Temporary Hardness) as Mg(OH2) and Ca of Lime as CaCO ₃ . This Equation will only be valid if Ca is < Alkalinity. Equation 3 Mg(HCO ₃) + 4 NaOH = Mg(OH2) + 2 Na ₂ CO ₃ + 2 H ₂ O gm as Such 146.3 160 58.3 212 - - gm as Such 100 200 100 200 - - My Case 0 0.00 0.00 5 0.0 - Equation 4 CaCl ₂ + Na ₂ CO ₃ = CaCO ₃ + 2NaCl + Precipitation of Ca bonded with Chloride (Permament Hardness) as CaCO ₃ (Use Similar Equation if Ca Bonded with SO ₄ or NO ₃) Equation 4 CaCl ₂ + Na ₂ CO ₃ = CaCO ₃ + 2NaCl + Precipitation of Ca bonded with Chloride (Permament Hardness) as CaCO ₃ (Use Similar Equation if Ca Bonded with SO ₄ or NO ₃) Equation 4 CaCl ₂ + Na ₂ CO ₃ = CaCO ₃ + 2NaCl + Precipitation of Ca Bonded with Chloride (Permament Hardness) as CaCO ₃ (Use Similar Equation if ME Bonded with SO ₂ or NO ₃)<
Equation 3 Mg(HCO ₃)2 + 4 NaOH = Mg(OH)2 + 2 Na ₂ CO ₃ + 2 H ₂ O gm as Such 146.3 160 58.3 122 - <td< th=""></td<>
gm as Such 146.3 160 58.3 212 gm as CaCO ₃ 100 200 100 200 200 My Case 0 0.00 0.0 5 0.0 Precipitation of Ca bonded with Chloride (Permanent Hardness) as CaCO ₃ (Use Similar Equation 1 to CaCl ₂ + Na ₂ CO ₃ = CaCO ₃ + 2NaCl + gm as Such 111 106 100 117 = gm as SacO ₃ 100 100 0 0 0 = My Case 9.0 9.0 9.0 5 9.0 =
gm as CaCO3 100 200 100 200 200 My Case 0 0.00 0.0 5 0.0 Image: Case of the second se
My Case 0 0.00 0.0 5 0.0 Precipitation of Ca bonded with Chloride (Permanent Hardness) as CaCO ₃ (Use Similar Equation if Ca Bonded with SO, or NO ₃) Equation 4 CaCl ₂ + Na ₂ CO ₃ = CaCO ₃ + 2NaCl + gm as Such 111 106 100 117 - gm as CaCO ₃ 100 100 000 000 My Case 9.0 9.0 9.0 9.0 5 9.0 - Precipitation of Me bonded with Chloride (Permanent Hardness) as CaCO. (Use Similar Equation if Me Bonded with SO. or NO.). - -
Precipitation of Ca bonded with Chloride (Permanent Hardness) as CaCO ₃ (Use Similar Equation if Ca Bonded with SO ₄ or NO ₃) Equation 4 CaCl ₂ + Na ₂ CO ₃ = CaCO ₃ + 2NaCl + gm as Such 111 106 100 1117 <
Equation 4 CaCl ₂ + Na ₂ CO ₃ = CaCO ₃ + Na ₂ CO + Na ₂ CO ₃ + Na ₂ CO + Stand + Na ₂ CO + Stand + Na ₂ CO + Stand + Na ₂ CO I Stand + Stand + Stand + Stand + Stand
gm as Such 111 106 100 117 Image: Constraint of the second sec
gm as CaCO3 100 100 100 100 My Case 9.0 9.00 9.0 5 9.0 Precipitation of Mg bonded with Chloride (Permanent Hardness) as CaCO. (Use Similar Equation if Mg Bonded with SO, or NO.). 100 100 100
My Case 9.0 9.0 9.0 9.0 9.0 Precipitation of Me bonded with Chloride (Permanent Hardness) as CaCO. (Use Similar Equation if Me Bonded with SO, or NO.). No. No. No.
Precipitation of Mg bonded with Chloride (Permanent Hardness) as CaCO ₂ (Use Similar Equation if Mg Bonded with SO ₂ or NO ₂).
CaCl ₂ produced would need Eq 4 to be repeated.
Equation 5 MgCl ₂ + 2 NaOH = Mg(OH) ₂ + 2 NaCl +
gm as Such 95.3 80 58.3 117
gm as CaCO ₃ 100 100 100 100
My Case 75 75.00 75.00 S 75.0
Precipitation of excess Alkalinity (Bicarbonates bonded with Na) (in this case all hardness would be temporary only, Permannet Hardness will be Zero)
Equation 6 NaHCO ₃ + NaOH = Na ₂ CO ₃ + H2O
gm as Such 84 40 106
gm as CaCO ₃ 50 50 100
My Case 140.00 140.00 280.00
Presence of Ammoniam Ion will Consume more lime and produce CaCl ₂ that would need Equation 4 to be repeated.
Equation 7 NH ₄ Cl + NaOH = NH ₃ + NaCl + 2H ₂ O
gm as Such 53.5 40 17 58.5
gm as CaCO ₃ 50 50 50 50
My Case 5 5.00 5.00 5.0
Alkali needed as NaOH mg/l 257.39 Sludge Estimation
Soda Ash needed as Na ₂ CO ₃ mg/l -302.74
Sludge Formed Auuming 100% Reaction mg/l 192.73

In NaOH use however be aware that $Mg(OH)_2$ precipitation would mean that all NaHCO₃ produced should first be converted to Na₂CO₃ and then only free OH ion would be available for Mg(OH)₂ precipitation.

The negative value of Soda ash above indicate here that use of NaOH would not be beneficial as enough $CaCl_2$ is not available to consume the produced Na_2CO_3 .

Quick Calculations -

If Only Lime is used:

Approximate if you do not wish to go in detailed calculations:

 $Ca(OH)_2$ Dose in ppm = 0.8 to 1 ppm / ppm of removed Alkalinity or Carbonate Ca Hardness as $CaCO_3$

Quantity of Carbonates sludge formed in Carbonate Ca Hardness removal with lime:

 $CaCO_3$ sludge (g/m³) = 2 to 2.1 ppm / ppm of removed Alkalinity or carbonate Ca Hardness as CaCO₃

Using soda:

Use of caustic soda increases the quantity of sodium in the treated water. The quantity of sodium added is :

Na in ppm = NaOH in ppm x 23 / 40 (i.e. 57,5 % of the load)

Alkalinity removal

NaOH in ppm = 0.8 to 1 ppm / ppm of removed Alkalinity as $CaCO_3$

Quantity of carbonates sludge formed in Alkalinity removal with caustic soda is:

CaCO3 sludge $(g/m^3) = 2$ to 2.1 ppm / ppm of removed Alkalinity as CaCO₃

Carbonate Ca Hardness removal using NaOH

NaOH $g/m^3 = 0.45$ to 0.6 ppm / ppm of removed Alkalinity as CaCO₃

Quantity of carbonates sludge formed in carbonate Ca Hardness removal with caustic soda is:

 $CaCO_3$ sludge (g/m³) = 0.9 to 1.1 ppm / ppm of removed Ca Hardness as $CaCO_3$

Volume 2 : Edition 3 – Precipitation Control for Feed water to RO & ZLD to Avoid Scaling

Mar 31, 2022

World Waughter Day – 2022

What could be a better way then Training to celebrate world water day -2022?

Aktion Consultancy 2,242 followers 1w • 🔇

Dear Water Warriors,

If you have not yet registered in the training program on "Operation 8 ...see more

Our Sanjeev Srivastava, Nidhi Jain and Larity Nongsiej covered the subject of "Operation & Maintenance strategy for RO and WWTP". With 152 Registrations, 72 Participants and 38 participants answering the quiz, the program was a great success with announcement of prize for:

- 1. Panneer Selvam
- 2. Rohan Rachani
- 3. Anjali Kandala, Ms
- 4. Al Shaikh

With equal marks.

The Five levers of a successful O&M Covered in detail are repeated below:

- Flow Management
- Equipment Health
- Performance of Individual Unit Operation
- Data Logging and Sampling Protocols
- Data Analysis, Trends and Control

जल जीवन जननी !!

Nidhi Jain • 1st Civil Engineer 2w • Edited • S

Hello Young Engineers,

Join us for Training program on Operation and Maintenece of ETP and RO.

Free Registration: https://lnkd.in/eAdJXUGm

#training #engineers #waterindustry
#worldwaterday #operationsandmaintenance
#reverseosmosis

Our world is Waughter

The technical knowledge share attempt of Aktion Consultancy and the contents in the magazine shall be qualified by Sanjeev Srivastava our Technology Lead.

Our next edition focuses on: "Softening & De alkalization for Ca, Mg Removal and Metal Removal"

Please feel free to write <u>info@aktionconsultancy.com</u> 90991 55227

Aktion Consultancy

C 1305, Rajyash Rise New Vasana, Nr Vishala Circle, NH-08, Ahmadabad - 380 051 India

Alka Srivastava – Founder

Aktion is committed to share "Knowledge".